
Advanced Mathematical Models & Applications

Vol.7, No.2, 2022, pp.130-145

ON SOME PROPERTIES AND APPLICATIONS OF THE GENERALIZED
m-PARAMETER MITTAG-LEFFLER FUNCTION

Ankita Chandola1, Rupakshi Mishra Pandey1, Ritu Agarwal2,
Laxmi Rathour3, Vishnu Narayan Mishra4∗

1Amity Institute of Applied Sciences, Amity University, Uttar Pradesh, India
2Malaviya National Institute of Technology, Jaipur, India
3Ward Number 16, Bhagatbandh, Annupur 484 224, Madhya Pradesh
4Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak,
Anuppur, Madhya Pradesh, India

Abstract. The Mittag-Leffler function plays a very important role in the theory of fractional differential equa-

tion, fractional kinetics, medical science and various applications in physics and engineering. In this article,

we use the m-parameter Mittag-Leffler function, explore its particular cases and visually illustrate the contour

plots graphically exhibiting the behaviour of the m-parameter Mittag-Leffler function for different values of the

parameters using MATHEMATICA-12. This concept of contour plotting and analyticity can be utilised to con-

struct a numerical evaluation technique of the m-parameter Mittag-Leffler function. The same approach may be

followed for other functions of the hypergeometric type and with some small modifications can be applied for

the Wright function which plays a very important role in the theory of partial differential equations of fractional

order. Further we have developed a new generalized form of fractional kinetic equation and obtained its solution

using Natural transform as an application of m-parameter Mittag-Leffler function.
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1 Introduction

The Mittag-Leffler function play a major role in physics and engineering problems. It is also
used in fractional calculus and its applications (Kumar et al., 2020). The Mittag-Leffler func-
tion arises in the solution of fractional order integral equations or fractional order differential
equations. It is mostly used in the area of applied sciences like rheology, fluid flow and electric
network, fractal kinetics (Atangana, 2017), medical science (Ghanbari et al., 2020), fractional
and fractal calculus and its applications (Nisar et al., 2020). It arises in the investigation of ran-
dom walks, Levy flights, super diffusive transport, fractional generalization of kinetic equation
and in the study of complex systems.

The kinetic equations describe the continuity of motion of substance. Due to the effectiveness
and a great importance of the kinetic equation in certain astrophysical problems we develop a
further generalized form of the fractional kinetic equation involving the m-parameter Mittag-
Leffler function.
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Haubold and Mathai (2000) discussed the fractional differential equation between the rate
of change of the reaction, the destruction rate and the production rate. Let M = (Mτ ) be the
arbitrary reaction which is defined by a time dependent quantity. Then the fractional differential
equation is given by

dM

dτ
= −d(Mτ ) + r(Mτ ), (1)

where
d = d(M) is the rate of destruction,
r = r(M) is the rate of production and
(Mτ ) is the function defined by Mτ (τ

∗) = M(τ − τ∗), τ∗ > 0.

As a particular case of the above equation (1), we have

dMj

dτ
= −pjMj(τ), (2)

with Mj(τ = 0) = M0 is the number density of the species j at time τ = 0 and pj > 0. The
solution of equation (2) is given by

Mj(τ) = M0e
−pjτ . (3)

On integrating equation (3), we get

M(τ)−M0 = −p0D
−1
τ M(τ), (4)

where 0D
−1
τ is the particular case of Riemann-Liouville integral operator 0D

−ξ
τ given by

(0D
−ξ
τ g)(τ) =

1

Γ(ξ)

∫ τ

0
(τ − u)ξ−1g(u)d(u), ℜ(ξ) > 0. (5)

where Γ is gamma function (Rainville, 1971, Eq. (8), p.9)

Γ(m) =

∫ ∞

0
tm−1e−tdt, ℜ(m) > 0.

For more details on Riemann-Liouville fractional operator, readers can refer Kilbas et al. (2006);
Liouville (1823).

Also, Haubold and Mathai (2000) gave the fractional generalization of the standard kinetic
equation (4)

M(τ)−M0 = −pξ0D
−1
τ M(τ) (6)

whose solution is given by

M(τ) = M0

∞∑
s=0

(−1)s

Γ(ξs+ 1)
(pτ)ξs. (7)

Saxena and Kalla (2008) gave the following fractional equation

M(τ)−M0g(τ) = −pξ0D
−ξ
τ M(τ), ℜ(ξ) > 0. (8)

We have used Natural transform in our work since it is a generalized version for the Laplace
transform (Spiegel, 1965) and the Sumudu transforms (Watugala, 1993). Khan and Khan (2008)
first introduced Natural transform.

The Natural transform of the function g(τ) is given as (Khan and Khan, 2008, Eq. (1),
p.127)

G(s, u) = N [g(τ); s, u] =

∫ ∞

0
e−sτg(uτ)dτ, (9)
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where ℜ(s) > 0, s is a complex number, u ∈ (−t1, t2). The real function g(τ) > 0 and g(τ) = 0
for τ < 0 is sectionwise continuous, exponential order and defined in the set

A = {g(τ) : ∃H, t1, t2 > 0, |g(τ)| < He
|τ |
tj , τ ∈ (−1)j × [0,∞)}.

Under particular values of u and s, the Natural transform reduces to Laplace and Sumudu
transforms:
(i) When u = 1, the Natural transform reduces to Laplace transform Spiegel (1965) which is
given by

G(s) = L[g(τ); s] =

∫ ∞

0
e−sτg(τ)dτ,

where s is a complex number, ℜ(s) > 0, g(τ) is of exponential order and piecewise continuous.
(ii) When s = 1, the Natural transform reduces to Sumudu transform Watugala (1993) which
is given by

G(u) = S[g(τ);u] =

∫ ∞

0
e−τg(uτ)dτ, u ∈ (−t1, t2),

where g(τ) is of exponential order and piecewise continuous.
For studying various types of generalizations of functions, their properties, applications and

generalizations of fractional kinetic equations with their solutions readers may refer to the fol-
lowing papers Agarwal et al. (2018); Chandola et al. (2020, 2021a,b); Nisar (2020).

The generalized Mittag-Leffler function with m-parameters (Agarwal et al., 2021) is defined
as

Eµ1,ν1;µ2,ν2;...;µr,νr
α,ρ;β1,κ1;β2,κ2;...;βp,κp

(t) = E
(µ,ν)r
α,ρ;(β,κ)p

(t) =
∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

tn, (10)

where (µ, ν)r = [µ1, ν1;µ2, ν2; . . . ;µr, νr], (β, κ)p = [β1, κ1;β2, κ2; . . . ;βp, κp], r+p = m−2, m is
any positive integer, t is a complex variable, µi, νi, α, ρ, βj , κj ∈ C, with minℜ{α, ρ, µi, νi, βj , κj} >
0 for i = 1, ..., r; j = 1, ..., p.

The generalized Mittag-Leffler function with m parameters reduces to the following special
cases on giving specific values to the various parameters:

(a) For r = p = 0 and ρ = 1 equation (10) reduces to the Gosta Mittag-Leffler function
Mittag-Leffler (1903) given by

Eα(t) =
∞∑
n=0

tn

Γ(αn+ 1)
, (11)

where α ≥ 0. Eα is entire function of the complex variable t, and Γ is gamma function
(Rainville, 1971, Eq. (8), p.9).

(b) For r = p = 0 equation (10) reduces to the Wiman function (Wiman, 1905, p.191) given by

Eα,ρ(t) =

∞∑
n=0

tn

Γ(αn+ ρ)
, α, ρ ∈ C, ℜ(α),ℜ(ρ) > 0. (12)

(c) For r = p = 1 and ν1 = 1, β1 = 1, κ1 = 1 equation (10) reduces to the Prabhakar function
(Prabhakar, 1971, Eq. (1.3), p.7) given by

Eµ
α,ρ(t) =

∞∑
n=0

(µ)nt
n

Γ(αn+ ρ)n!
, ℜ(α) > 0,ℜ(ρ) > 0, µ > 0 (13)
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where (µ)n is the Pochhammer symbol defined by (Rainville, 1971, Eq.(1), p.22; Eq.(3),
p.23)

(µ)n =
Γ(µ+ n)

Γ(µ)
=

{ ∏n
r=1 (µ+ r − 1), n ∈ N

1, n = 0
µ ̸= 0,−1,−2, . . . .

(d) For r = p = 1 and β1 = 1, κ1 = 1 equation (10) reduces to the generalization of Prabhakar
function given by Shukla and Prajapati (Shukla and Prajapati, 2007, Eq. (1.4), p.798) and
defined as

Eµ,ν
α,ρ(t) =

∞∑
n=0

(µ)νnt
n

Γ(αn+ ρ)n!
, (14)

where min {ℜ(α),ℜ(ρ),ℜ(µ)} > 0, α, ρ, µ, ν ∈ C, (µ)νn = Γ(µ+νn)
Γ(µ) is the generalized

Pochhammer symbol, which in particular reduces to (µ)νn = ννn
∏ν

i=1

(
µ+i−1

ν

)
n
if ν ∈ N.

(e) For r = p = 1 and κ1 = 1 equation (10) reduces to the generalization given by Khan and
Ahmed (Khan and Ahmed, 2013, Eq. (1.7), p.2) as

Eµ,ν
α,ρ;β(t) =

∞∑
n=0

(µ)νnt
n

Γ(αn+ ρ)(β)n
, (15)

where min {ℜ(α),ℜ(ρ),ℜ(β),ℜ(µ)} > 0 and ν ∈ (0, 1) ∪ N.

(f) For r = p = 2 equation (10) reduces to the further generalization given by Khan and Ahmed
(Khan and Ahmed, 2013, Eq. (1.9), p.2), defined by

Eµ1,ν1;µ2,ν2
α,ρ;β1,κ1;β2,κ2

(t) =
∞∑
n=0

(µ1)ν1n(µ2)ν2nt
n

Γ(αn+ ρ)(β1)κ1n(β2)κ2n
, (16)

where α, ρ, µ1, ν1, µ2, β1, κ1, β2 ∈ C, min {ℜ(α),ℜ(ρ),ℜ(µ1),ℜ(ν1),ℜ(µ2),ℜ(β1),ℜ(κ1),ℜ(β2)}
> 0, ν2, κ2 > 0, ℜ(α) + κ2 ≥ ν2.

In this paper, we present contour plots of particular cases of m-parameter Mittag-Leffler
function which will be useful in future to define a numerical algorithm to discuss the behaviour
of m-parameter Mittag-Leffler function. Also, as an application of m-parameter Mittag-Leffler
function we will generalize the standard kinetic equation to a fractional kinetic equation using
m-parameter Mittag-Leffler function and use Natural transform to find the solution of this
fractional kinetic equation.

2 Contour Lines

In this section, we take some particular cases of m-parameter Mittag-Leffler function and rep-
resent its contour plots graphically. Also, we will discuss the analyticity of those functions.

Let us denote the contour plot of real and imaginary part of E
(µ,ν)r
α,ρ;(β,κ)p

(t).

1. Contour Plot for real part of E
(µ,ν)r
α,ρ;(β,κ)p

(t) is

ℜC(µ,ν)r
α,ρ;(β,κ)p

(v) = {t ∈ C : ℜ[E(µ,ν)r
α,ρ;(β,κ)p

(t)] = v}. (17)
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2. Contour Plot for imaginary part of E
(µ,ν)r
α,ρ;(β,κ)p

(t) is

ℑC(µ,ν)r
α,ρ;(β,κ)p

(v) = {t ∈ C : ℑ[E(µ,ν)r
α,ρ;(β,κ)p

(t)] = v}. (18)

Fixing r = p = 4 (i.e., m = 10) in the m-parameter Mittag-Leffler function (10) we have

Eµ1,ν1,µ2,ν2,µ3,ν3,µ4,ν4
α,ρ,β1,κ1,β2,κ2,β3,κ3,β4,κ4

(t) =
∞∑
n=0

(µ1)ν1n(µ2)ν2n(µ3)ν3n(µ4)ν4n
Γ(αn+ ρ)(β1)κ1n(β2)κ2n(β3)κ3n(β4)κ4n

tn. (19)

We now give particular values to the parameters and discuss the contour plot and the ana-
lyticity of the function.

Table 1: Contour plots and Analyticity of m-parameter Mittag-Leffler function.

Particular values

Parameters Case 1 Case 2 Case 3

α 0 1 1
ρ 1 1 2
β1 1 1 1
κ1 1 1 1
β2 1 1 1
κ2 1 1 1
β3 1 1 1
κ3 1 1 1
β4 1 1 1
κ4 1 1 1
µ1 1 1 1
ν1 1 1 1
µ2 1 1 1
ν2 1 1 1
µ3 1 1 1
ν3 1 1 1
µ4 1 1 1
ν4 1 1 1

Function 1
1−t et −1+et

t

Analyticity Simple pole at t = 1 Entire Pole at t = 0, zeros at t = 2kπι, k ∈ Z

134



CHANDOLA et al.: ON SOME PROPERTIES AND APPLICATIONS OF THE GENERALIZED...

Case 1.

(a) Contour Plot. (b) Complex Region Plot.

Figure 1: ℜ[E1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(t)] = ℜ

(
1

1−t

)
.

Observation

1. The contour line ℜC1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(0) is the vertical line ℜ(t) = 1, separating the left and

the right half planes.

2. The white disc on the left of the line ℜ(t) = 1 represents {t ∈ C : ℜ[E1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(t)] >

1}.

3. The white disc on the right of the line ℜ(t) = 1 represents {t ∈ C : ℜ[E1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(t)] <

−1}.

4. The contour lines ℜC1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(1) is the boundary of the circle of the white disc on the

left.

5. The contour lines ℜC1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(−1) is the boundary of the circle of the white disc on

the right.
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(a) Contour Plot. (b) Complex Region Plot.

Figure 2: ℑ[E1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(t)] = ℑ

(
1

1−t

)
.

Observation

1. The contour line ℑC1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(0) is the horizontal line ℑ(t) = 0, separating the upper

and the lower half planes.

2. The white disc above the line ℑ(t) = 0 represents {t ∈ C : ℑ[E1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(t)] > 1}.

3. The white disc below the line ℑ(t) = 0 represents {t ∈ C : ℑ[E1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(t)] < −1}.

4. The contour lines ℑC1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(1) is the boundary of the circle of the white disc on the

upper half plane.

5. The contour lines ℑC1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(−1) is the boundary of the circle of the white disc on

the lower half plane.

a. Complex Plot.

Figure 3: Zeros and Poles of [E1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(t)] =

1
1−t .
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Observation

The function E1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,1,1(t) is not entire, but it can be analytically continued to all of

C \ {1} and has a simple pole at t = 1.

Case 2.

(a) Contour Plot. (b) Complex Region Plot.

Figure 4: ℜ[E1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1(t)] = ℜ (et).

(a) Contour Plot. (b) Complex Region Plot.

Figure 5: ℑ[E1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1(t)] = ℑ (et).
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a. Complex Plot.

Figure 6: Zeros and Poles of [E1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,1,1(t)] = et.

Observation
For case 2, that is when α changes from 0 to 1, there is a drastic change in the contour plot of
the function. The function is entire and wedge is the right half plane with lobes running parallel
to the real axis.

Case 3.

(a) Contour Plot (b) Complex Region Plot

Figure 7: ℜ[E1,1,1,1,1,1,1,1
1,2,1,1,1,1,1,1,1,1(t)] = ℜ

(
−1+et

t

)
.
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(a) Contour Plot. (b) Complex Region Plot.

Figure 8: ℑ[E1,1,1,1,1,1,1,1
1,2,1,1,1,1,1,1,1,1(t)] = ℑ

(
−1+et

t

)
.

a. Complex Plot.

Figure 9: Zeros and Poles of [E1,1,1,1,1,1,1,1
1,2,1,1,1,1,1,1,1,1(t)] =

−1+et

t .

Observation
For case 3, keeping α = 1, we change ρ from 1 to 2. We observe that the fingers extend more
and more towards the left half plane. Also, the function E1,1,1,1,1,1,1,1

1,2,1,1,1,1,1,1,1,1(t) has poles at t = 0
and zeros at t = 2kπι, k ∈ Z.

Hence, the particular cases considered shows that the function changes its analyticity based
on the values of parameters. Similarly by taking different values of m and particular values
of the parameters, we can study the contour plots and discuss about the analyticity of various
functions.

The complex and the contour plots of m-parameter Mittag-Leffler function will be useful in
developing a numerical algorithm based on various factors such as integral representations, expo-
nential asymptotics among various others to evaluatem-parameter Mittag-Leffler function, study
its behaviour as holomorphic function and its dependence upon the parameters α, ρ, βj , κj , µi
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and νi for i = 1, ..., r; j = 1, ..., p.

3 Generalized Fractional Kinetic Equation

Here, we investigate the solutions of generalized fractional kinetic equations involvingm-parameter
Mittag-Leffler function. The solutions are obtained in terms of Wiman function andm-parameter
Mittag-Leffler function using Natural transform.

Theorem 1. Let (µ, ν)r = [µ1, ν1;µ2, ν2; . . . ;µr, νr], (β, κ)p = [β1, κ1;β2, κ2; . . . ;βp, κp], r+p =
m− 2, m is any positive integer. If µi, νi, α, ρ, βj , κj ∈ C, with minℜ{α, ρ, µi, νi, βj , κj} > 0 for
i = 1, ..., r; j = 1, ..., p, q > 0 and ξ > 0, then the solution of the equation

M(τ)−M0E
(µ,ν)r
α,ρ;(β,κ)p

(τ) = −qξ0D
−ξ
τ M(τ) (20)

is given by

M(τ) = M0E
(µ,ν)r
α,ρ;(β,κ)p

(τ)Eξ,n+1(−qξτ ξ)Γ(n+ 1). (21)

Proof. Re-arranging the equation (20), we have

M(τ) = M0

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

τn − qξ0D
−ξ
τ M(τ). (22)

The Natural transform of Riemann-Liouville integral operator is:

N [0D
−ξ
τ g(τ); s, u] = uξs−ξG(s, u), (23)

where G(s, u) is the Natural transform of g(τ).
Applying Natural transforms on both sides of equation (22), we get

N [M(τ); s, u]

= M0

(∫ ∞

0
e−sτ

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

un+1τndτ

)
− qξN

[
0D

−ξ
τ M(τ); s, u

]

=⇒ M(s, u) = M0

( ∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

∫ ∞

0
e−sτun+1τndτ

)
− qξuξs−ξM(s, u)

=⇒ M(s, u)
[
1 + qξuξs−ξ

]
= M0

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

Γ(n+ 1)

sn+1
un+1

=⇒ M(s, u) = M0

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

Γ(n+ 1)s−(n+1)un+1
∞∑
l=0

[
−
(

s

qu

)−ξ
]l

.

(24)

Taking the inverse Natural transform of the above equation (24) and using N−1
[(

s
u

)−ξ
; τ
]
=
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τξ−1

Γ(ξ) , ℜ(ξ) > 0, we get

N−1 [M(s, u)]

= M0

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

Γ(n+ 1)N−1

[ ∞∑
l=0

(−1)lqξluξl+n+1s−(n+ξl+1)

]

=⇒ M(τ) = M0

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

Γ(n+ 1)

∞∑
l=0

(−1)lqξl
τn+ξl

Γ(n+ ξl + 1)

=⇒ M(τ) = M0

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

τnΓ(n+ 1)

∞∑
l=0

(−1)l
(qτ)ξl

Γ(n+ ξl + 1)

=⇒ M(τ) = M0E
(µ,ν)r
α,ρ;(β,κ)p

(τ)Eξ,n+1(−qξτ ξ)Γ(n+ 1).

Hence we get our desired result (21).

Theorem 2. If µi, νi, α, ρ, βj , κj ∈ C, with minℜ{α, ρ, µi, νi, βj , κj} > 0 for i = 1, ..., r; j =
1, ..., p, q > 0 and ξ > 0, then the solution of the equation

M(τ)−M0E
(µ,ν)r
α,ρ;(β,κ)p

(qξτ ξ) = −qξ0D
−ξ
τ M(τ) (25)

is given by

M(τ) = M0E
(µ,ν)r
α,ρ;(β,κ)p

(qξτ ξ)Eξ,ξn+1(−qξτ ξ)Γ(ξn+ 1). (26)

Proof. Re-arranging the equation (25), we have

M(τ) = M0

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

qξnτ ξn − qξ0D
−ξ
τ M(τ). (27)

Applying Natural transforms on both sides of equation (27), we get

N [M(τ); s, u]

= M0

(∫ ∞

0
e−sτ

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

qξnuξn+1τ ξndτ

)
− qξN

[
0D

−ξ
τ M(τ); s, u

]
=⇒ M(s, u)

= M0

( ∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

qξnuξn+1

∫ ∞

0
e−sττ ξndτ

)
− qξuξs−ξM(s, u)

=⇒ M(s, u)
[
1 + qξuξs−ξ

]
= M0

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

qξn
Γ(ξn+ 1)

sξn+1
uξn+1

=⇒ M(s, u) = M0

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

Γ(ξn+ 1)qξnuξn+1s−(ξn+1)
∞∑
l=0

[
−
(

s

qu

)−ξ
]l

.

(28)

Taking the inverse Natural transform of the above equation (28). Using N−1
[(

s
u

)−ξ
; τ
]
= τξ−1

Γ(ξ) ,

ℜ(ξ) > 0 and simplifying as in Theorem 1 we get

M(τ) = M0E
(µ,ν)r
α,ρ;(β,κ)p

(qξτ ξ)Eξ,ξn+1(−qξτ ξ)Γ(ξn+ 1).

Hence we get our desired result (26).
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Theorem 3. If µi, νi, α, ρ, βj , κj ∈ C, with minℜ{α, ρ, µi, νi, βj , κj} > 0 for i = 1, ..., r; j =
1, ..., p, q > 0 and ξ > 0 and φ > 0, then the solution of the equation

M(τ)−M0E
(µ,ν)r
α,ρ;(β,κ)p

(qξτ ξ) = −φξ
0D

−ξ
τ M(τ) (29)

is given by

M(τ) = M0E
(µ,ν)r
α,ρ;(β,κ)p

(qξτ ξ)Eξ,ξn+1(−φξτ ξ)Γ(ξn+ 1). (30)

Proof. Re-arranging the equation (29), we have

M(τ) = M0

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

qξnτ ξn − φξ
0D

−ξ
τ M(τ). (31)

Applying Natural transforms on both sides of equation (31), we get

N [M(τ); s, u]

= M0

(∫ ∞

0
e−sτ

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

qξnuξn+1τ ξndτ

)
− φξN

[
0D

−ξ
τ M(τ); s, u

]

=⇒ M(s, u)

= M0

( ∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

qξnuξn+1

∫ ∞

0
e−sττ ξndτ

)
− φξuξs−ξM(s, u)

=⇒ M(s, u)
[
1 + φξuξs−ξ

]
= M0

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

qξn
Γ(ξn+ 1)

sξn+1
uξn+1

=⇒ M(s, u) = M0

∞∑
n=0

(µ1)ν1n(µ2)ν2n . . . (µr)νrn
Γ(αn+ ρ)(β1)κ1n . . . (βp)κpn

Γ(ξn+ 1)qξnuξn+1s−(ξn+1)
∞∑
l=0

[
−
(

s

φu

)−ξ
]l

.

(32)

Taking the inverse Natural transform of the above equation (32). Using N−1
[(

s
u

)−ξ
; τ
]
= τξ−1

Γ(ξ) ,

ℜ(ξ) > 0 and simplifying as in Theorem 1 we get

M(τ) = M0E
(µ,ν)r
α,ρ;(β,κ)p

(qξτ ξ)Eξ,ξn+1(−φξτ ξ)Γ(ξn+ 1).

Hence we get our desired result (30).

3.1 Special cases.

If r = p = 0 and ρ = 1, Theorem 1 gives the fractional kinetic equation for Gosta Mittag-Leffler
function (11):

Corollary 1. If α ≥ 0, q > 0 and ξ > 0, then the solution of the equation

M(τ)−M0Eα(τ) = −qξ0D
−ξ
τ M(τ) (33)

is given by
M(τ) = M0Eα(τ)Eξ,n+1(−qξτ ξ)Γ(n+ 1). (34)
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If r = p = 0, Theorem 1 gives the fractional kinetic equation for Wiman function (12) :

Corollary 2. If α, ρ ∈ C,ℜ(α) > 0,ℜ(ρ) > 0, q > 0 and ξ > 0, then the solution of the equation

M(τ)−M0Eα,ρ(τ) = −qξ0D
−ξ
τ M(τ) (35)

is given by

M(τ) = M0Eα,ρ(τ)Eξ,n+1(−qξτ ξ)Γ(n+ 1). (36)

If r = p = 1 and ν1 = 1, β1 = 1, κ1 = 1, Theorem 1 gives the fractional kinetic equation for
Prabhakar function (13) :

Corollary 3. If ℜ(α) > 0,ℜ(ρ) > 0, µ > 0, q > 0 and ξ > 0, then the solution of the equation

M(τ)−M0E
µ
α,ρ(τ) = −qξ0D

−ξ
τ M(τ) (37)

is given by

M(τ) = M0E
µ
α,ρ(τ)Eξ,n+1(−qξτ ξ)Γ(n+ 1). (38)

If r = p = 1 and β1 = 1, κ1 = 1, Theorem 1 gives the fractional kinetic equation for the
generalization of Prabhakar function given by Shukla and Prajapati (14):

Corollary 4. If min {ℜ(α),ℜ(ρ),ℜ(µ)} > 0, α, ρ, µ, ν ∈ C, q > 0 and ξ > 0, then the solution
of the equation

M(τ)−M0E
µ,ν
α,ρ(τ) = −qξ0D

−ξ
τ M(τ) (39)

is given by

M(τ) = M0E
µ,ν
α,ρ(τ)Eξ,n+1(−qξτ ξ)Γ(n+ 1). (40)

If r = p = 1 and κ1 = 1, Theorem 1 gives the fractional kinetic equation for the generalization
given by Khan and Ahmed (15) :

Corollary 5. If min {ℜ(α),ℜ(ρ),ℜ(β),ℜ(µ)} > 0, ν ∈ (0, 1) ∪ N, q > 0 and ξ > 0, then the
solution of the equation

M(τ)−M0E
µ,ν
α,ρ,β(τ) = −qξ0D

−ξ
τ M(τ) (41)

is given by

M(τ) = M0E
µ,ν
α,ρ,β(τ)Eξ,n+1(−qξτ ξ)Γ(n+ 1). (42)

If r = p = 2, Theorem 1 gives the fractional kinetic equation for the further generalization
given by Khan and Ahmed (16):

Corollary 6. If α, ρ, µ1, ν1, µ2, β1, κ1, β2 ∈ C, ν2, κ2 > 0, ℜ(α) + κ2 ≥ ν2
min {ℜ(α),ℜ(ρ),ℜ(µ1),ℜ(ν1),ℜ(µ2),ℜ(β1),ℜ(κ1),ℜ(β2)} > 0, q > 0 and ξ > 0, then the solu-
tion of the equation

M(τ)−M0E
µ1,ν1,µ2,ν2
α,ρ,β1,κ1,β2,κ2

(τ) = −qξ0D
−ξ
τ M(τ) (43)

is given by

M(τ) = M0E
µ1,ν1,µ2,ν2
α,ρ,β1,κ1,β2,κ2

(τ)Eξ,n+1(−qξτ ξ)Γ(n+ 1). (44)

Remark 1. By taking suitable conditions and particular values of the parameters in Theorems 2
and 3 , we can reduce the generalized fractional kinetic equations involving m-parameter Mittag-
Leffler function to fractional kinetic equations involving various types of Mittag-Leffler functions
in a similar way as the above corollaries.
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4 Conclusion

In this article we have simulated the complex and contour plots of some particular cases of
m-parameter Mittag-Leffler function using MATHEMATICA-12. Several other plots can be
obtained and discussed on changing the values of the parameters. This will help in developing a
numerical algorithm which will be used to evaluate them-parameter Mittag-Leffler function. The
algorithm will also help in studying its behaviour as holomorphic function and its dependence
upon the parameters α, ρ, βj , κj , µi and νi for i = 1, ..., r; j = 1, ..., p. We have also introduced
a new fractional generalization of the standard kinetic equation involving m-parameter Mittag-
Leffler function and derived the solutions for the same. Under some special conditions, we
have reduced the generalized fractional kinetic equation involving m-parameter Mittag-Leffler
function to fractional kinetic equation involving Mittag-Leffler, Wiman, Prabhakar function and
various other forms of Mittag-Leffler function. The results that we have obtained is general in
nature. We can find several new and known solutions of fractional kinetic equations involving
some other function.
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